Google Classroom
GeoGebraGeoGebra Classroom

MAS y MCU: isocronismo

Esta actividad pertenece al libro de GeoGebra El dominio del Tiempo. El movimiento armónico simple se puede ver como una proyección de cierto movimiento circular uniforme. Veamos cuál. La siguiente construcción está diseñada para que el punto verde MM siga un MCU alrededor de O, pero siempre en la misma vertical que el punto azul M. Esto conlleva que el radio de la circunferencia ha de ser igual a la amplitud A del MAS. La aceleración centrípeta de este MCU es c (vector verde discontínuo), cuyo módulo hemos visto que vale ω2 A. Pues bien, para que MM se mantenga siempre en la misma vertical que M, la componente horizontal de c debe ser precisamente la aceleración a del MAS. Esto es así porque el triángulo de cateto a e hipotenusa c ha de ser semejante al de cateto x e hipotenusa A, tal como muestra la construcción. Debido a esta semejanza de triángulos, tenemos que |a|/|c| = x/A, es decir |a| = |c| x/A = ω2 x. Pero también sabíamos que |a| = k/m x, así que ha de cumplirse ω2 = k/m, por lo que la velocidad angular del MCU ha de valer ω = y el período ha de ser T = 2π/ω = 2π. Como cada vez que MM da una vuelta, M da una oscilación completa, el período de ambos movimientos ha de ser el mismo. Deducimos entonces que el período del MAS no depende de la amplitud A, solo depende de la masa m y la elasticidad k. Para un resorte de elasticidad k, la masa m siempre tardará lo mismo en realizar una oscilación completa. Esta propiedad se denomina isocronismo.
GUION DEL DESLIZADOR anima # Calcula los segundos dt transcurridos; para ello, suma un segundo si t1(1) < tt Valor(tt, t1(1)) Valor(t1, Primero(TomaTiempo(), 3)) Valor(dt, (t1(1) < tt) + (t1(1) tt)/1000) # Mueve M y MM Valor(MM, O + (r; t ω)) Valor(aux, v) Valor(v, v + dt a) Valor(M, M + dt v) # Registra el tiempo del período y el número de oscilaciones completas Valor(reg, Si(x(aux) > 0 ∧ x(v) < 0, Añade(t, reg), reg)) Valor(osci, Si(x(aux) > 0 ∧ x(v) < 0, osci + 1, osci)) Autor de la actividad y construcción GeoGebra: Rafael Losada.