Google Classroom
GeoGebraGeoGebra Classroom

4.4b Nullstellen

Hier ist eine Parabel mit der Funktion f(x) = x² + px + q = (x - xS)² + yS gegeben, die mit den Pfeiltasten (oder durch Ziehen am Graphen) verändert werden kann. Die roten Schnittpunkte mit der x-Achse sind Nullstellen der Funktion, die Lösungen der Gleichung f(x) = 0. Ziehe f so, dass der Scheitelpunkt S immer auf einem Gitterpunkt mit ganzzahligen Koordinaten liegt,

  1. Was kannst du über die Anzahl der Nullstellen aussagen? Wie hängt dies mit der Lage von S zusammen?
  2. Nun soll eine Formel für die Nullstellen entdeckt werden. Betrachte zunächst den Spezialfall, dass S auf der y-Achse liegt. Untersuche, wie weit die Nullstellen von der y-Achse entfernt liegen, wenn der Scheitelpunkt unterhalb der x-Achse liegt. Findest du eine Gesetzmäßigkeit?
  3. Ziehe so, dass S von der y-Achse weg liegt (z.B. auf (3, -4)) und übertrage die Erkenntnisse von b) auf diesen Fall. Führe dies für weitere Scheitelpunkte unterhalb der x-Achse durch.
  4. Finde allgemein eine Formel für x1 und x2 abhängig von S = (xS, yS).
  5. Finde einen Zusammenhang zwischen xS und den Koeffizienten p und q. Finde einen Zusammenhang zwischen yS und den Koeffizienten p und q.