36. ábra – Gömb térfogatának meghatározása
A csúszka segítségével metsszük a testeket.
A gömb térfogatának meghatározásakor a Cavalieri – elvet használjuk.
Ha a gömböt fél körének térfogatát meg tudjuk határozni, akkor az egészét is.
A Cavalieri – elv alapján a félgömb alapsíkkal való párhuzamos síkmetszeteit keressük.
A mi esetünkben az alapsík megegyezik a főkörnél szelő síkkal. Ezek a síkmetszetek körök lesznek, amelyeknek a sugara g, keressük ezeknek a síkmetszetek a területét, jelöljük T_G – vel, ami a mi esetünkben lesz.
A kifejés átalakítása után azt látjuk, hogy a síkmetszetek területe a d magasságtól függ.
Az előbb leírt képletben a zárójeleket felbontjuk, ezzel egy körgyűrű területét kapjuk meg.
A Cavalieri – elv használatához szükség van egy testre, amelynek tudjuk a térfogatát, valamint arra, hogy egy test bármelyik síkmetszetének területe egyenlő legyen a gömb síkmetszetének területével – ez a definícióból adódik.
A gömböt főkörénél ráhelyeztük egy síkra, majd ugyan erre a síkra felveszünk egy hengert és egy kúpot. A Henger és a kúp magassága és sugara egyenlő a gömb sugarával.
Olyan testet, amelyik síkmetszetének területe megegyezik a gömb síkmetszeteivel, jelen esetben nem tudunk szerkeszteni. De az illusztráción a csúszka mozgatásával megfigyelhető, hogy a gömb és kúp síkmetszetek területeinek összege egyenlő a henger síkmetszetének területével, ebben az esetben ez π.
Ezek alapján meghatározzuk a gömb síkmetszetének területét, ami lesz.
A Cavalieri – elve szerint ez azt jelenti, hogy a félgömb térfogata megegyezik azzal a test térfogatával, amelyet akkor kapunk, amikor a hengerből kivesszük a kúpot. Ennek a testnek a térfogata a félgömb térfogata, tehát a gömbé: