Google Classroom
GeoGebraGeoGebra Classroom

Creating a Centroid

Introduction to Centroid

In Geometry, the centroid is an important concept related to a triangle. A triangle is a three-sided bounded figure with three interior angles. Based on the sides and angles, a triangle can be classified into different types such as
  • Scalene triangle
  • Isosceles triangle
  • Equilateral triangle
  • Acute-angled triangle
  • Obtuse-angled triangle
  • Right-angled triangle
The centroid is an important property of a triangle. Let us discuss the definition of centroid, formula, properties and centroid for different geometric shapes in detail.     Centroid Definition The Centroid is the center point of the object. The point in which the three medians of the triangle intersect is known as the centroid of a triangle. It is also defined as the point of intersection of all the three medians. The median is a line that joins the midpoint of a side and the opposite vertex of the triangle. The centroid of the triangle separates the median in the ratio of 2: 1. It can be found by taking the average of x- coordinate points and y-coordinate points of all the vertices of the triangle. References: https://byjus.com/maths/centroid/