Esquema
calculo vectorial
El cálculo vectorial, análisis vectorial o cálculo multivariable es un campo de las matemáticas referidas al análisis real multivariable de vectores en 2 o más dimensiones. Es un enfoque de la geometría diferencial como conjunto de fórmulas y técnicas para solucionar problemas muy útiles para la ingeniería y la física.
Consideramos los campos vectoriales, que asocian un vector a cada punto en el espacio, y campos escalares, que asocian un escalar a cada punto en el espacio. Por ejemplo, la temperatura de una piscina es un campo escalar: a cada punto asociamos un valor escalar de temperatura. El flujo del agua en la misma piscina es un campo vectorial: a cada punto asociamos un vector de velocidad.
Cuatro operaciones son importantes en el cálculo vectorial:
Gradiente: mide la tasa y la dirección del cambio en un campo escalar; el gradiente de un campo escalar es un campo vectorial.
Rotor o rotacional: mide la tendencia de un campo vectorial a rotar alrededor de un punto; el rotor de un campo vectorial es otro campo vectorial.
Divergencia: mide la tendencia de un campo vectorial a originarse o converger hacia ciertos puntos; la divergencia de un campo vectorial es un campo escalar.
Laplaciano: relaciona el "promedio" de una propiedad en un punto del espacio con otra magnitud, es un operador diferencial de segundo orden.