Circles on the Rim, 3: Iteration-ის ასლი
Iterating on the rim.
The straight line across the bottom, through B, is the projection of the bounding circle.
I could also reproject so that circles p and q are the same size; a problem which is already solved. But I would like slightly more than this. I want iteration rules, either in the original figure, or in a single projection space.
Ok. For more circles on the line, no problem. But what about....
(more soon).
_________________
The Tangent Circle Problem:
- 1. Tangent along the rim: solve for k
- 2a. Initial position: http://www.geogebratube.org/material/show/id/58360
- 2b. Tangent to equal circles: http://www.geogebratube.org/material/show/id/58455
- 3a. Four mutually tangent & exterior circles (Apollonius): http://www.geogebratube.org/material/show/id/58189
- 3b. Vector reduction: http://www.geogebratube.org/material/show/id/58461
- Affine Transformation http://www.geogebratube.org/material/show/id/58177
- Reflection: Line about a Circle http://www.geogebratube.org/material/show/id/58522
- Reflection: Circle about a Circle: http://www.geogebratube.org/material/show/id/58185
- Circle Inversion: Metric Space: http://www.geogebratube.org/material/show/id/60132
- Sequences 1: Formation http://www.geogebratube.org/material/show/id/58896
- Sequence 1: Formation http://www.geogebratube.org/material/show/id/59816
- →Sequence 1: Iteration 1
- Example of equivalent projections: http://www.geogebratube.org/material/show/id/65754
- Final Diagram: http://www.geogebratube.org/material/show/id/65755