Menghitung Limit
Perhitungan limit pada EMT dapat dilakukan dengan menggunakan fungsi Maxima, yakni "limit". Fungsi "limit" dapat digunakan untuk menghitung limit fungsi dalam bentuk ekspresi maupun fungsi yang sudah didefinisikan sebelumnya. Nilai limit dapat dihitung pada sebarang nilai atau pada tak hingga (-inf, minf, dan inf). Limit kiri dan limit kanan juga dapat dihitung, dengan cara memberi opsi "plus" atau "minus". Hasil limit dapat berupa nilai, "und" (tak definisi), "ind" (tak tentu namun terbatas), "infinity" (kompleks tak hingga).
Perhatikan beberapa contoh berikut. Perhatikan cara menampilkan perhitungan secara lengkap, tidak hanya menampilkan hasilnya saja.
>$showev('limit(sqrt(x^2-3*x)/(x+1),x,inf))
>$limit((x^3-13*x^2+51*x-63)/(x^3-4*x^2-3*x+18),x,3)
Fungsi tersebut diskontinu di titik x=3
>aspect(1.5); plot2d("(x^3-13*x^2+51*x-63)/(x^3-4*x^2-3*x+18)",0,4); plot2d(3,-4/5,>points,style="ow",>add):
>$limit(2*x*sin(x)/(1-cos(x)),x,0)
Fungsi tersebut diskontinu di titik x=0
>plot2d("2*x*sin(x)/(1-cos(x))",-pi,pi); plot2d(0,4,>points,style="ow",>add):
>$limit(cot(7*h)/cot(5*h),h,0)
Fungsi tersebut juga diskontinu (karena tidak terdefinisi) di x=0
>plot2d("cot(7*x)/cot(5*x)",-0.001,0.001); plot2d(0,5/7,>points,style="ow",>add):
>$showev('limit(((x/8)^(1/3)-1)/(x-8),x,8))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("((x/8)^(1/3)-1)/(x-8)",-10,10); plot2d(8,1/24,>points,style="ow",>add):
>$showev('limit(1/(2*x-1),x,0))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("1/(2x-1)",-10,10,-10,10); plot2d(0,-1,>points,style="ow",>add):
>$showev('limit((x^2-3*x-10)/(x-5),x,5))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(x^2-3*x-10)/(x-5)",-10,10,-10,10); plot2d(5,7,>points,style="ow",>add):
>$showev('limit(sqrt(x^2+x)-x,x,inf))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("sqrt(x^2+x)-x"); plot2d(10000,0.5,>points,style="ow",>add):
>$showev('limit(abs(x-1)/(x-1),x,1,minus))
Hitung limit di atas untuk x menuju 1 dari kanan.
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>plot2d("abs(x-1)/(x-1)",0,1,-2,2); plot2d("abs(x-1)/(x-1)",1,2,-2,2,>add); plot2d(1,-1,>points,>add); plot2d(1,1,>points,>add):
>$showev('limit(sin(x)/x,x,0))
>plot2d("sin(x)/x",-pi,pi); plot2d(0,1,>points,style="ow",>add):
>$showev('limit(sin(x^3)/x,x,0))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(sin(x^3))/x",-2*pi,2*pi); plot2d(0,0,>points,style="ow",>add):
>$showev('limit(log(x), x, minf))
>$showev('limit((-2)^x,x, inf))
>$showev('limit(t-sqrt(2-t),t,2,minus))
>$showev('limit(t-sqrt(2-t),t,2,plus))
>$showev('limit(t-sqrt(2-t),t,5,plus)) // Perhatikan hasilnya
>plot2d("x-sqrt(2-x)",0,2):
>$showev('limit((x^2-9)/(2*x^2-5*x-3),x,3))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(x^2-9)/(2*x^2-5*x-3)",-5,5,-10,10); plot2d(3,6/7,>points,style="ow",>add):
>$showev('limit((1-cos(x))/x,x,0))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(1-cos(x))/x",-10*pi,10*pi); plot2d(0,0,>points,style="ow",>add):
>$showev('limit((x^2+abs(x))/(x^2-abs(x)),x,0))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(x^2+abs(x))/(x^2-abs(x))",-20,20,-20,20); plot2d(0,-1,>points,style="ow",>add):
>$showev('limit((1+1/x)^x,x,inf))
>plot2d("(1+1/x)^x",0,1000):
>$showev('limit((1+k/x)^x,x,inf))
>$showev('limit((1+x)^(1/x),x,0))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(1+x)^(1/x)",-20,20,-20,20); plot2d(0,E,>points,style="ow",>add):
>$showev('limit((x/(x+k))^x,x,inf))
>$showev('limit((E^x-E^2)/(x-2),x,2))
Tunjukkan limit tersebut dengan grafik, seperti contoh-contoh sebelumnya.
>aspect(1.5); plot2d("(E^x-E^2)/(x-2)",-10,10,-10,10); plot2d(2,E^2,>points,style="ow",>add):
>$showev('limit(sin(1/x),x,0))
>$showev('limit(sin(1/x),x,inf))
>plot2d("sin(1/x)",-0.001,0.001):




































