Google Classroom
GeoGebraGeoGebra Classroom

Net of Cone

Introduction

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the vertex. A cone is like a pyramid. But it has a circular base and curved face.

Objective

To Observe the net of cone.

User Guideline

Use of slider then observe the visualization of Net.

Questions

Q.1)Study the given figure. Which is the name of solids by given net?

Select all that apply
  • A
  • B
  • C
  • D
Check my answer (3)

Construction Protocol

Firstly we open GGB applet. Then choose algebra , 2D and 3D perspectives. 1.Take a slider t. (minimum=0, maximum=1) Use input bar and follow these rule and type given terms then choose enter. 2. f= PerpendicularLine((1, 0, 0), xOyPlane) 3.A= Point(f) 4.B= Intersect(xAxis, f) 5.C=Intersect(xAxis, yAxis) 6. g=Segment(C, A) 7.=Angle(B, C, A) 8. a=Cone(B, A, 1) 9.A'= Rotate(A, t α, yAxis) 10. h= PerpendicularLine(A', xOyPlane) 11.D=Intersect(h, xOyPlane) 12.d=Distance(B, C) 13.=2(π d) / Distance(D, C) 14.C'= Rotate(C, β / 2, h) 15. C'_1=Rotate(C, (-β) / 2, h) 16.e=CircumcircularArc(C', C, C'_1 17.i=Distance(A', D) 18.j=Distance(D, C') 19.k=x(A') 20.=t π 21.m=Curve((k - j cos(u β / 2)) cos(ϕ), j sin(u β / 2), (k - j cos(u β / 2)) sin(ϕ), u, -1, 1) 22.l=Surface((k - v j cos(u β / 2)) cos(ϕ) - (1 - v) i sin(ϕ), v j sin(u β / 2), (1 - v) i cos(ϕ) + (j - v j cos(u β / 2)) sin(ϕ), u, -1, 1, v, 0, 1) 23.E=(k cos(ϕ) - i sin(ϕ), 0, i cos(ϕ) + k sin(ϕ)) 24.F=point(m) 25.G=Point(m) 26.n=Segment(F, E) 27.p=Segment(E, G) 28. Take text tool and write Net of cone.