Google Classroom
GeoGebraClasse GeoGebra

Hyperbola - its connection with circles using perspective collineation

The yellow points may be moved. Related material: The correspondence of the different arcs of the circle and parts of the hyperbola:
  • circular arc P1' B' P2' is correspondent to the environment of vertex B of the hyperbola,
  • circular arc between P1' and U2' to the right side branch of the hyperbola (upper part),
  • circular arc between P2' and U2' to the right side branch of the hyperbola (lower part),
  • circular arc U1' A' U2' to the left side branch of the hyperbola,
  • points U1' and U2' to the ideal points of the hyperbola (points at infinity).
Interesting correlation: neutral line r (likewise, same properties for the parabola) is the directrix of the hyperbola, by means of which an alternative definition of conics can be given (see: excentricity). Note: neither the construction of tangents to a circle through an external point (Thales-circle), nor the construction of the asymptotes are depicted. Step-by-step construction:
  1. A hyperbola is given by its vertices (A, B) and foci (F1, F2).
  2. Let us construct the asymptotes of the hyperbola. These lines are tangent to the curve at its points at infinity (id est ideal points: U1 and U2). The minor axis of the hyperbola is also depicted.
  3. Let us construct points P1 and P2 of the hyperbola. The necessary secondary auxiliary circle with center F1 is not depicted.
  4. Let us define a perspective collineation. Its axis (t=t') passes through P1 and P2 (fixed points). Focus F2 will be the center of the transformation. The image of the hyperbola will be our auxiliary circle with center F2.
  5. The major axis (as a reference line of the transformation) intersects the image of the hyperbola, id est the circle, these will be the images of the vertices of the curbe (A', B').
  6. Let us draw the reference lines of U1 and U2. Since they are points at infinity, we should draw parallels to the asymptotes through the center of the transformation (F2). Points U1' and U2' are the "finite" images of these points on the circle.
  7. The images of the asymptotes are tangents to these points and pass through the image of the center (O').
  8. Points U1' and U2' define the vanishing line of the perspective collineation (q'). This line is the image of the line at infity (ideal line) of the plane, as well as of the points at infity lying on it.
  9. The other vanishing line, or sometimes called neutral line (r) is as far from the center (F2) as q' from t=t'. Line r has its image at infinity, id est its image is the ideal line of the plane.
  10. Parallels to the images of the asymptotes: with the help of these lines we can check, if line r is correct.

1. Intersection of a hyperbola with a line

Given: a hyperbola and line e (step 9). Note: The image of line e can be constructed with the help of its point Re (steps 10-11). The image of this point is a point at infinity (since it lies on line r), that is why e' will be parallel to the line passing through the center (F2) and Re. Obviously, the image of line e may be constructed in many ways (for instance with the help of its intersection points on the asymptotes).

2. Hiperbola adott irányú érintői

Adott: a parabola és az i irány (9. lépés). Megjegyzés: Párhuzamos egyenesek egy végtelen távoli (ideális) pontban metszik egymást. Az i irányhoz, azaz a vele párhuzamos összes egyeneshez egy ilyen pont tartozik (I), amelynek a képét (I') a centrumon (F2) áthaladó, i-vel párhuzamos egyenes metszi ki a q' ellentengelyen, amely a végtelen távoli egyenes végesbe eső képe (10. lépés). Ellentétben a parabolával, két végesben fekvő megoldást is kapunk (14-15. lépés), amelyek középpontosan szimmetrikusak a hiperbola O középpontjára (16. lépés). Érdemes átgondolni, hogy miért tűnik úgy, mintha az E1, E2 és O pontok más sorrendben lennének, mint a képeik (17-18. lépés).

3. Hiperbola külső pontból húzott érintői

Adott: a hiperbola és a hiperbolán kívül fekvő K pont (9. lépés). Megjegyzés: A K pont képét (K') a hiperbola B csúcspontján átmenő s egyenes segítségével szerkesztjük (10. lépés). Szürke színnel egy alternatív szerkesztést is feltüntettünk (11-12. lépés), K ponton keresztül párhuzamost húzva az egyik aszimptotával olyan egyenest kapunk, amelynek az aszimptotával közös végtelen távoli pontja van (U2). Ezen segédegyenes képe tehát áthalad ezen végtelen távoli pont végesbe eső képén (U2').