Google Classroom
GeoGebraGeoGebra Classroom

Congruencia de Triángulos: Criterio LLL

Concepto

En matemáticas, dos figuras de puntos son congruentes si tienen los lados iguales y el mismo tamaño (o también, están relacionados por un movimiento) si existe una isometría que los relaciona: una transformación que es combinación de translaciones, rotaciones y reflexiones. Por así decirlo, dos figuras son congruentes si tienen la misma forma y tamaño, aunque su posición u orientación sean distintas. Las partes coincidentes de las figuras congruentes se llaman homólogas o correspondientes. Criterios de congruencia de triángulos: Los criterios de congruencia de triángulos nos dicen que no es necesario verificar la congruencia de los 6 pares de elementos ( 3 pares de lados y 3 pares de ángulos), bajo ciertas condiciones, podemos verificar la congruencia de tres pares de elementos. Primer criterio de congruencia: LLL Dos triángulos son congruentes si sus tres lados son respectivamente iguales. a ≡ a’ b ≡ b’ c ≡ c’ → triáng ABC ≡ triáng A’B'C’ Segundo criterio de congruencia: LAL Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos. b ≡ b’ c ≡ c’ α ≡ α’ → triáng ABC ≡ triáng A’B'C’ Tercer criterio de congruencia: ALA Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado. b ≡ b’ α ≡ α’ β ≡ β’ → triáng ABC ≡ triáng A’B'C’

Construcción de Triángulos Congruentes

Construcción de Triángulos Congruentes

Describe los criterios de congruencia de triángulos
Describe los criterios de congruencia de triángulos
Describe los criterios de congruencia de triángulos
Describe los criterios de congruencia de triángulos
Describe los criterios de congruencia de triángulos
Describe los criterios de congruencia de triángulos
Realizar una Applet de Geogebra que cumpla las siguientes características: