Google Classroom
GeoGebraGeoGebra Classroom

Normalize Data and Regression Polynom

Normalization

Normalize() If there is a big differenz between x/y-data (e.g. percent x-values to ~103 y-values) you may get polynom coefficients ~0 (see Regression Model in Scatterplot vs p0(x) ). Set rounding up to 15 decimal places to avoid rounding errors OR do Normalization of data Functions for single value processing: XNorm(t) do normalization of x-values [0, 1] YNorm(t) do normalization of y-values [0, 1] Yinvn(t) do denormalization of y-values Fit with list of data, no normalization p0(x) = 0.00003748588368154x² - 0.3256415866742x + 614.1874647092 Fit with normalized data : normdata = Normalize(data) pn(x) = 0.3908102766798x² - 1.430560227623x + 1.039570076342
x-value 1200 normalized: Xnorm(1200) = 1/3
regression y-value of normalized data: pn(Xnorm(1200)) = 0.6061400312094 
denormalized y-value of normalized data:Yinvn(pn(Xnorm(1200))) = 277.3972332016
y-value of regression no normalization: p0(1200)=277.397233201
reconstructed function from nomalization f(x)=Yinvn(p_n(Xnorm(x)))