Google Classroom
GeoGebraTarefa

4.3. As funções e suas aplicações

Por que aprender funções? Na ciência e nas mais variadas atividades humanas, as funções são usadas para descrever e estudar a relação entre grandezas. Assista ao vídeo.

Exemplo 1: O gasto com combustível é função do número de litros colocados no tanque do automóvel.

Exemplo 1: O gasto com combustível é função do número de litros colocados no tanque do automóvel.

Exemplo 2: A dose de remédio dada a uma criança, muitas vezes, é função da massa da criança.

Exemplo 2: A dose de remédio dada a uma criança, muitas vezes, é função da massa da criança.

Exemplo 3: O juro pago por um empréstimo é calculado em função da quantia emprestada.

Exemplo 3: O juro pago por um empréstimo é calculado em função da quantia emprestada.
As funções têm aplicações nas situações do cotidiano e do trabalho. Acompanhe as situações apresentadas:

Primeira situação:

Primeira situação:

No açougue, o quilograma de determinado tipo de carne custa R$ 6,00. O preço a pagar y é função da quantidade de carne comprada x. veja a tabela:

No açougue, o quilograma de determinado tipo de carne custa R$ 6,00. O preço a pagar y é função da quantidade de carne comprada x. veja a tabela:
A cada valor de x corresponde um único valor de y. A lei de formação dessa função é y = 6x. Lembre que: x e y são as variáveis da função. A lei de formação da função estabelece a relação matemática entre x e y. Vamos aplicá-la para responder a algumas questões.
Image
Image
Observe que, nesse exemplo de função, x não pode assumir valores negativos, pois uma medida de massa nunca é negativa.

No açougue o funcionário digita na balança o preço do kg de carne (R$ 6,00) e coloca a carne sobre o prato da balança que registra a massa (é o valor de x).

No açougue o funcionário digita na balança o preço do kg de carne (R$ 6,00) e coloca a carne sobre o prato da balança que registra a massa (é o valor de x).

A balança calcula automaticamente 6 . x e apresenta no visor o valor a pagar, que é o valor de y.

A balança calcula automaticamente 6 . x e apresenta no visor o valor a pagar, que é o valor de y.

Responda:

Quanto se paga por 2,5 kg dessa carne?

Assinale a sua resposta aqui
  • A
  • B
  • C
  • D
Verifique minha resposta (3)

Segunda situação.

Segunda situação.
Image
Em um parque de diversões, os visitantes pagam R$ 15,00 pelo ingresso e R$ 3,00 para brincar em cada uma das 20 atrações disponíveis. A quantia p gasta pelo visitante depende do número de atrações n que ele escolher e pagar. Lembre que: n e p são as variáveis dessa função Podemos representar a relação entre n e p pela fórmula p = 15 + 3n.
A cada valor de n nesse intervalo corresponde um único valor a pagar p. Então p é função de n.

Responda:

Responda:
A cada valor de n nesse intervalo corresponde um único valor a pagar p. Então p é função de n.

Situação 3:

A cada valor de n nesse intervalo corresponde um único valor a pagar p. Então p é função de n.
Uma fábrica produz placas de aço na forma de retângulos. As medidas variam; no entanto, a medida do comprimento tem sempre 5 cm a mais do que a medida da largura. Quantos centímetros quadrados de aço são gastos em cada placa?
Image

2) Nessa função, qual é o menor valor que podemos ter para p? Explique esse valore.

Image
Qual deve ser a medida x para que a área da peça retangular seja de 104 cm²? Basta fazer y = 104 cm² na lei de formação da função: y = x² + 5x 104 = x² + 5x Obtivemos uma equação do 2º grau. Vamos resolvê-la para encontrar x.
Image

Reescrevendo a equação:

Reescrevendo a equação:

Reescrevendo a equação:

Se os lados do retângulo medem (x + 5) e x, sua área é y = (x + 5) * x. Aplicando a propriedade distributiva obtemos y = x² + 5x. A cada valor de x corresponde um único valor de y. então y é função de x. Podemos montar uma tabela com alguns valores dessa função.
Consideramos somente a solução positiva, pois x é a medida do lado do retângulo. Então, para que a área da peça seja de 104 cm², devemos ter x = 8 cm.
Image