Google Classroom
GeoGebra
GeoGebra Classroom
Anmelden
Suche
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Startseite
Materialien
Profil
Classroom
Apps herunterladen
Die zum Fermat-Problem gehörende Maximumaufgabe
Autor:
Roman Chijner
Thema:
Fläche
,
Analysis
,
Schwerpunkt
,
Umkreis
,
Konstruktionen
,
Koordinaten
,
Geometrie
,
Schnittmenge
,
Gleichschenklige Dreiecke
,
Besondere Punkte
,
Dreiecke
https://did.mat.uni-bayreuth.de/geonet/beispiele/minimum/ ... Mit der Lösung des Fermat-Problems:
Gibt es in jedem Dreieck einen Punkt F so, daß die Summe der Entfernungen von F zu den drei Eckpunkten minimal ist?
ist somit gleichzeitig das
maximale umbeschriebene gleichseitige Dreieck
bestimmt und umgekehrt. Ein Minimum- und ein Maximumproblem, die so miteinander zusammenhängen, heißen zueinander dual. Das Fermat-Problem und die Bestimmung des maximalen gleichseitigen Umdreiecks können somit als die Urväter der Dualitätsprobleme der Optimierungstheorie angesehen werden.
GeoGebra
Neue Materialien
Solving 2x2 and 3x3 Systems Using Cramer's Rule
Exploring Number of Squares on the Diagonal of a Rectangle
Rectangular Cross Sections
רישום חופשי
Untitled
Entdecke Materialien
CCGPS CA 4.2.4 Example 1
Tractor shovel
vierkantsvergelijkingen oplossen
LZ 8.1.1.2 Triangle Square Dance C
задача 3
Entdecke weitere Themen
Kugel
Inkreis
Vektoren
Vektoren 3D (dreidimensional)
Lineare Gleichungen