Google Classroom
GeoGebraGeoGebra Klaslokaal

Planar graph of regular hexahedron

Move the gray vertices of the hexahedron on the left picture to get planar graph on the right.

Planar graph (Schlegel diagram) of a convex polyhedra lack scale, distance and shape, but the relationship between points is maintained. Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then v - e + f = 2. Thanks to Schlegel diagram it is clear that Euler's formula is also valid for convex polyhedra.
The skeleton of hexahedron (the vertices and edges) form a graph. It is one of 5 Platonic graphs, each a skeleton of its Platonic solid.