Ääriarvotehtävä
Punainen käyrä on funktion f (x) = 1 / x kuvaaja.
Sininen käyrä on kuvaaja funktiolle, joka määrittelee etäisyyden pisteestä B pisteeseen A.
Tehtävä
1) Tutki pienintä mahdollista etäisyyttä pisteestä B pisteeseen A = (2, ½) kun x > 0 muuttamalla B:paikkaa liu´uttajalla. Pienimmän etäisyyden saat sinisen funktion y-arvosta.
2) Mikä on etäisyysfunktion derivaatan arvo kun etäisyys on pienimmillään lukualueella x > 0? Minkälainen ääriarvokohta etäisyysfunktiolla on tässä pisteessä?
3) Johda etäisyysfunktion matemaattinen kaava. Derivoi se ja tutki derivaattaa merkkikaaviolla. Derivaatan nollakohdaksi tulee ratkaisu yhtälöön 2 x ^3 = 1, kun x > 0. Kun x < 0, on pienin mahdollinen etäisyys nolla, kun piste B on samassa pisteessä A:n kanssa.
(Vastaukset löydät kuvan alta)