Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Abrir sesión
Buscar
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Esquema
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Autor:
Bunryu Kamimura
Tema:
Problemas de Optimización
,
Ortocentro
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Siguiente
垂足三角形が最短の周を持つことのシュワルツの証明
Nuevos recursos
コイン投げと樹形図
小テスト
フーリエ級数展開
直線の軌跡
standingwave-reflection
Descubrir recursos
正方形の作図(省エネ)
(使用)中一円錐回転体p186
calc_p47
円に内接する四角形
ともなって動く点のえがく図形45-2
Descubre temas
Recta Tangente o Tangente
Simetría
Paralelogramo
Variables Aleatorias
Elipse