Google Classroom
GeoGebraGeoGebra Klaslokaal

Definizione di derivata

Il seguente foglio di lavoro esemplifica la definizione di derivata di una funzione f in un punto a interno al suo dominio. Si possono variare il valore di a e dell'incremento h. Si può inoltre visualizzare la retta tangente al grafico della funzione nel suo punto di ascissa a, la cui pendenza rappresenta il valore delle derivata di f in a, indicata con f'(a)

Definizione di derivata

Siano f una funzione reale di variabile reale definita su un intervallo I, e a un punto di I. Diciamo che f è derivabile in a se esiste finito il limite del rapporto incrementale per h che tende a O. Il valore di tale limite si chiama derivata di f in a, e si indica con f'(a). In sintesi

Significato grafico della derivata

La derivata di una funzione f in un punto a rappresenta la pendenza della retta tangente al grafico di f nel punto (a;f(a)).

Retta tangente al grafico di una funzione

L'equazione della retta tangente al grafico di una funzione f derivabile in a nel punto (a,f(a)) è perciò y-f(a)=f'(a)(x-a)