Ableitung von Exponentialfunktionen
Mit diesem interaktiven Arbeitsblatt bildest du mit grafischen Mitteln die Ableitung der Exponentialfunktion
1.)
Stelle die gewünschte Basis a mit dem roten Schieberegler ein.
2.)
Ziehe den Ziehpunkt auf dem Graphen entlang und beobachte dabei die Tangente a
3.)
Die Steigung der Tangente an einer Stelle x ist bekanntlich der Wert der
Ableitung an dieser Stelle. Den Wert der Steigung (bzw. der Ableitung)
bekommst du angezeigt, wenn du das Kästchen "Steigungsdreieck anzeigen"
aktivierst.
4.)
Wir bilden nun grafisch die Ableitungsfunktion:
Eigentlich müsste man eine Wertetabelle anlegen: Als x-Werte jeweils die
x-Werte des Ziehpunktes und als zugehörige y-Werte die
Tangentensteigungen an diesen Stellen. Dann könnte man die Funktion
zeichnen.
Wir benutzen diese Idee, lassen uns aber die Punkte für den Graphen der
Ableitungsfunktion direkt vom Computer einzeichnen (Kästchen "Steigung
als y-Wert abtragen" aktivieren).
4.)
Der "Spurpunkt" ist nun ein Punkt der Ableitungsfunktion. Er zeigt mit
seinem y-Wert (grüne Linie) genau die Ableitung der roten Funktion an
der Stelle x an, an der sich der Ziehpunkt gerade befindet.
Wenn man nun den Ziehpunkt weiter zieht, so passt sich auch der
Spurpunkt entsprechend an. D. h. er fährt sozusagen auf dem Graphen der
Ableitungsfunktion entlang.
5.)
Diesen Graphen der Ableitungsfunktion kannst du auch sichtbar machen,
indem du den Spurpunkt mit Rechts anklickst und im Kontextmenü "Spur an"
auswählst. Wenn du nun mit dem Ziehpunkt hin und her fährst, malt der
Spurpunkt den Graphen der Ableitungsfunktion.
6.)
Es sieht wohl ganz danach aus, dass die Ableitung einer
Exponentialfunktion wieder eine Exponentialfunktion ist. Die Frage ist:
Was für eine genau? Wir suchen nun die Funktionsgleichung der Ableitung:
- Der Graf der Ableitungsfunktion geht nicht durch den Punkt (0|1). Also kann es keine Funktion der Form sein.
- Vertikal verschoben ist der Graph auch nicht. Das sieht man daran, dass im negativen Bereich sich die Graphen der Funktion und der Ableitung fast decken.
- Der Graph könnte allerdings gestaucht bzw. gestreckt sein. Das würde eine Funktionsgleichung nahe legen.