Abschluss und Zusammenfassung des Lernpfads "Parabeln"
Dieses Online-Arbeitsblatt gibt dir die Möglichkeit die wesentlichen Inhalte des Lernpfads noch einmal zu wiederholen und zu vertiefen.
Zur Bearbeitung der Aufgaben benötigst Du Dein Heft und einen Stift.
Aktiviere das Kontrollkästchen Funktionsterme anzeigen
Aufgabe 1
a) Verändere zunächst der Reihe nach die Werte der blauen Schieberegler. Überprüfe, wo sich die Werte von , b und c exakt in dem Term wiederfinden.
Notiere eine allgemeine Form des Funktionsterms von f.
b) Verändere nun der Reihe nach die Werte der roten Schieberegler. Überprüfe, wo sich die Werte von , d und e exakt in dem Term wiederfinden.
Notiere eine allgemeine Form des Funktionsterms von .
Merke: Die Werte der blauen Schieberegler sind die Koeffizienten im Term .
Die Werte der roten Schieberegler sind die Koeffizienten im Term .
______________________________________________________________
Aufgabe 2
a) Bewege nun nur Regler . Welche Wirkung beobachtest Du?
Formuliere im Heft: Koeffizient verändert ... _
b) Bewege nun nur Regler b. Welche Wirkung beobachtest Du jetzt?
Formuliere wieder im Heft: Koeffizient b verändert ... __
c) Zuletzt bewege nur Regler c. Welche Wirkung beobachtest Du?
Formuliere: Koeffizient c verändert ...
______________________________________________________________
Aufgabe 3
Versuche nun, die drei Koeffizienten , b und c so einzustellen, dass die Parabel in S ihren tiefsten Punkt hat und außerdem durch Punkt P verläuft.
Notiere den Ergebnisterm im Heft: f(x) = ...
Stelle nun alle blauen Schieberegler auf 0.
______________________________________________________________
Aufgabe 4
a) Bewege nun nur Regler . Welche Wirkung beobachtest Du?
Formuliere: Koeffizient a2 verändert .....
b) Bewege nun nur Regler d. Welche Wirkung beobachtest Du jetzt?
Formuliere: Koeffizient d verändert ...
c) Zuletzt bewege nur Regler e. Welche Wirkung beobachtest Du?
Formuliere: Koeffizient e verändert
______________________________________________________________
Aufgabe 5
Versuche, die drei Koeffizienten a2, d und e so einzustellen, dass die Parabel in S ihren tiefsten Punkt hat und außerdem durch Punkt P verläuft.
Notiere den Ergebnisterm: = ...
Multipliziere den Term aus und vergleiche mit aus Aufgabe 3!
______________________________________________________________
Aufgabe 6
Der tiefste bzw. der höchste Punkt einer Parabel heißt Scheitelpunkt. Stelle einen Zusammenhang zwischen den Koordinaten des Scheitelpunktes S(3|2) und dem Term her!
Die Gleichung einer Parabel durch den Scheitelpunkt S(d|e) lautet
Diese Darstellung heißt Scheitelpunktform der Parabel.
______________________________________________________________
Aufgabe 7
Wenn die Parabel zusätzlich durch Punkt P(-2|7) verlaufen soll, müssen die Koordinaten von P die Scheitelpunktform erfüllen, also muss gelten
7 = a * (-2 - 3)² + 2
7 = a * (-5)² + 2
5 = a * 25
also a = 1/5 = 0.2
und f2(x) = 0.2 * (x - 3)² + 2 = 0.2 * x² - 1.2 * x + 3.8 = f(x)