Симетрія відносно точки
Нехай О – фіксована точка і Х – довільна точка площини. Відкладемо на продовжені відрізка ОХ за точку О відрізок ОХ`, що дорівнює ОХ. Точка Х` Називається симетричною точці Х відносно точки О. Точка, симетрична точці О, є сама точка О. Очевидно, точка симетрична точці Х`, є точка Х.
Перетворення фігури F у фігуру F`, при якому кожна її точка Х переходить у точку X`, семертичну відносно даної точки О, називається перетворенням симетрії відносно точки О. При цьому фігура F і F` називається симетричними відносно точки О.
Якщо перетворення симетрії відносно точки О переводить фігуру F у себе, то вона називається центрально-симетричною, а точка О називається центром симетрії.