7. Allgemeine quadratische Funktionen
Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat:
f(x)=ax2+bx+c
Aufgabe 1
Experimentiere mit dem obigen Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben.
Aufgabe 2
Stelle die drei Schieberegler des unteren Applet so ein, dass der schwarze Graph genau auf dem
Graphen liegt.
Aufgabe 3
Untersuche nun die Funktionen f mit f(x) = 1,5x2 + 9x + 11,5 und g mit g(x) = 0,5x2 + x + 2,5
Die allgemeine quadratische Funktion in der Anwendung
Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil (ax2), einen linearen Teil (bx) und einen konstanten Teil (c).
Du hast in den vorangegangenen Kapiteln erfahren, dass sich beim Bremsen eines Pkws der Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form f(x) = ax2 + bx beschreiben lässt, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.
Aufgabe 4
Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"?