¿Sin fórmula?
Esta actividad pertenece al libro de GeoGebra Ecuaciones y Sistemas.
Para resolver una ecuación de segundo grado a x2 + b x + c = 0 existen diferentes estrategias particulares, si la ecuación no está completa, si está factorizada o si sus soluciones son números enteros.
En primer lugar, si alguno de los coeficientes b o c es cero (es decir, si la ecuación está incompleta), es fácil resolverla directamente. Veamos algunos ejemplos:
- Para resolver 2x2 - 8 = 0, despejamos x2 y después extraemos la raíz cuadrada.
- Haríamos algo similar para resolver la ecuación 2(x-1)2 - 8 = 0, despejando primero (x-1)2.
- Para resolver 2x2 -8x = 0, factorizamos como (2x -8) x = 0. Como el producto es cero, al menos uno de los factores ha de ser 0. Así que o bien 2x - 8 = 0, o bien x = 0.
- Si el coeficiente principal es uno (por ejemplo, x2 - 8x + 15 = 0), basta buscar dos números cuyo producto sea c (15) y su suma el opuesto de b, es decir, 8. No es difícil encontrarlos: son 3 y 5.
- Si el coeficiente principal no es uno, dividimos antes por él toda la ecuación y hacemos lo mismo.
1. Vamos a resolver la ecuación a 4x2 -24x + 27 = 0. Usa la igualdad x0 = -b/(2a) para calcular la abscisa del vértice, x0.
2. El vértice (x0, y0) es un punto de la gráfica de la parábola, así que debe cumplir su ecuación. Sustituye en la ecuación de la parábola, y = 4x2 -24x + 27, el valor obtenido de x0 y calcula el correspondiente valor y0.
3. Una vez que ya conoces el vértice de la parábola, puedes sustituir la ecuación completa 4x2 -24x + 27 = 0 por la ecuación incompleta 4(x-x0)2 + y0 = 0, que corresponde a la forma canónica de esa función cuadrática. Comprueba en la aplicación que esa forma canónica coincide con la que se muestra en verde.
4. Resuelve la ecuación despejando el cuadrado y extrayendo después la raíz cuadrada. Llama x1 y x2 a las soluciones. Comprueba en la aplicación que las soluciones x1 y x2 que has encontrado coinciden con las que se muestran en la Vista Algebraica (zona de la izquierda).
5. Halla, de la misma manera, las soluciones de la ecuación 4x2 - 8x - 5 = 0 (o de cualquier otra ecuación de segundo grado que desees). Compruébalas con la aplicación escribiendo en la barra de entrada la nueva definición de la función cuadrática: f(x) = 4x^2 - 8x - 5.
Nota: Observa que no todas las ecuaciones de segundo grado tienen soluciones reales. Para que existan soluciones la función cuadrática debe poseer raíces, es decir, la parábola debe cruzar (o al menos tocar) el eje OX.
Autor de la construcción y la actividad: Rafael Losada Liste.
Esta actividad está presente en el Proyecto Gauss