Sekante Tangente und weiter zur Ableitungsfunktion
Als f(x) (blau) kann ein beliebiger Funktionsterm definiert werden.
In einem Punkt A auf dem Graphen von f soll die Steigung bestimmt werden.
Die Steigung ist definiert durch die Steigung der Tangente (rot) im Punkt A.
Da durch 1 Punkt keine Gerade eindeutig gelegt werden kann, wählt man einen 2. Punkt B auf dem Graphen von f und lässt die Sekante (grün) durch A und B zeichnen.
Je mehr sich B dem Punkt A nähert, wird die Sekante zur Tangente und damit auch die Sekantensteigung ms zur Tangentensteigung m.
Am x-Wert von A wird der Steigungswert m als Punkt S dargestellt. Wird A gezogen, so wird S aktualisiert und zeichnet dabei seine Spur auf.
f '(x) (cyan) gibt den Graphen der Ableitungsfunktion an. Man sieht, dass S immer auf diesem Graphen liegt.