センター試験数学ⅠA第5問
四角形ABCDにおいて、AB=4、BC=2、DA=DCであり、4つの頂点A,B,C,Dは同一円周上にある。
対角線ACと対角線BDの交点をE、線分BCを2:3に内分する点をF。直線FEと直線DCの交点をGとする。
∠ABCの大きさが変化するとき四角形ABCDの外接円の大きさも変化することに注目すると、
∠DAC=∠DCA=∠DBC=∠( )。このことより、EC/AE=(1/2)である。
次に△ACDと直線FEに着目すると、GC/DG=(1/3)である。
(1)直線ABが点Gを通る場合について考える。
この時、△AGDの辺AG上に点Bがあるので、BG=(3)である。
また、直線ABと直線DCが点Gで交わり、4点ABCDは同一円周上にあるので、DC=(2)√(7)である。
(2)四角形ABCDの外接円の直径が最小となる場合について考える。
この時、四角形ABCDの外接円の直径は(4)であり、∠BAC=( )°である。
また、直線FEと直線ABの交点をHとするとき、
GC/DG=( )/( )の関係に着目してAHを求めると、AH=(2)である。